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ABSTRACT. This paper presents some results, using the characteristic rank recently

introduced by the second named author, on those smooth manifolds which can serve as

total spaces of smooth fibre bundles with fibres totally non-homologous to zero with respect

to Z2. As the main results, first, some upper and lower bounds for the characteristic rank

of those total spaces which need not be null-cobordant are derived; then, bounds for the

characteristic rank of null-cobordant total spaces are deduced. Examples are shown, where

the upper and lower bounds coincide; thus these bounds cannot be improved in general. All

examples of manifolds considered are homogeneous spaces.

1 Introduction

Our aim in this note is to present some results on those smooth manifolds which can

serve as total spaces of smooth fibre bundles. More precisely, we mainly shall deal

with some situations, where a new homotopy invariant of smooth closed manifolds

called the characteristic rank, introduced by the second named author in [4], brings an

interesting piece of information. For this, we concentrate on smooth fibre bundles with

fibres totally non-homologous to zero: given a smooth fibre bundle p : E −→ B with

total space E, base space B and fibre F we recall (see, e.g., [7, p. 124]) that F is said
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to be totally non-homologous to zero (in E) with respect to a given coefficient ring R

if the fibre inclusion i : F → E induces an epimorphism, i∗ : H∗(E; R) → H∗(F ; R),

in cohomology.

In the sequel, we shall always understand R = Z2 and write just H i(X) instead of

H i(X; Z2) for the ith Z2-cohomology group of X. In addition, all manifolds, thus also

the total spaces, fibres and base spaces of smooth fibre bundles, will be (supposed to

be, even if we do not mention it explicitly) smooth, connected and closed; all examples

of manifolds considered will be homogeneous spaces. Note that for our purposes we

may take any fibre Fb = {x ∈ E; p(x) = b}, where b ∈ B, in the role of F mentioned

above, since B is path connected.

One may think of various types of conditions which must be satisfied by the Z2-

cohomology of the total space E of any smooth fibre bundle p : E → B with base B

and fibre F , if F should be totally non-homologous to zero in E. Among the well-

known ones are (see [7], about the Leray-Hirsch theorem), for instance, that the Z2-

Poincaré polynomial P (E; t) =
∑

i dimZ2H
i(E)ti must be the product P (B; t)P (F ; t),

that the induced homomorphism p∗ : H∗(B) → H∗(E) must be a monomorphism or

that the kernel of i∗ : H∗(E) → H∗(F ), where i : F → E is the fibre inclusion, must

be the ideal generated by p∗(H+(B)), where H+(B) =
∑

i>0
H i(B).

For specific manifolds in the role of F or B, we may be able to derive specific condi-

tions. To give a not so well known (as compared to, for instance, spheres or projective

spaces) example: for the real Grassmann manifold G2s+4,4
∼= O(2s+4)/(O(4)×O(2s))

(s ≥ 3), consisting of 4-dimensional vector subspaces in R
2s+4, one calculates ([1])

that the height of the third Stiefel-Whitney class w3 ∈ H3(G2s+4,4) of the canonical

4-plane bundle over G2s+4,4 is equal to 2s +1; in other words, we have w2s+1

3 6= 0, but

w2s+2

3 = 0. Therefore if E were the total space of a smooth fibre bundle over B with

G2s+4,4 as fibre F , this fibre being totally non-homologous to zero, then there must

exist an element x ∈ H3(E) such that i∗(x) = w3, x2s+1 6= 0, and x2s+2 must lie in

the ideal generated by p∗(H+(B)).

As is known (see, for instance, [6]), the Stiefel-Whitney characteristic classes

wi(M) ∈ H i(M) of a (smooth, closed, connected) manifold M are identified with

the Stiefel-Whitney classes of its tangent bundle TM , thus wi(M) = wi(TM). These

characteristic classes are crucial in studying several fundamental properties of M .

Most notably, M is orientable if and only if w1(M) = 0. But, as already indicated
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in [4], it turns out that the degree up to which the cohomology algebra H∗(M) is

generated by the Stiefel-Whitney classes of M also carries useful information.

More precisely, in [4] the second named author defined the characteristic rank,

briefly charrank(M), of a d-dimensional manifold M , to be the largest integer k,

0 ≤ k ≤ d, such that each element of the cohomology group Hj(M) with j ≤ k can

be expressed as a polynomial in the Stiefel-Whitney classes of M . For instance, if M

is orientable and H1(M) 6= 0, then we have charrank(M) = 0. For more results on

the values of characteristic rank, see [4].

The usefulness of the characteristic rank is already clear from the following the-

orem. By cup(M) we denote the Z2-cup-length of the manifold M , hence the maxi-

mum of all numbers c such that there exist, in positive degrees, cohomology classes

a1, . . . , ac ∈ H∗(M) such that their cup product a1 ∪ · · · ∪ ac is nonzero. In addition,

let rM denote the smallest number such that the reduced cohomology group H̃rM (M)

does not vanish (we note that 0 < rM ≤ d since M is a connected d-dimensional

manifold).

Theorem 1.1. (Korbaš [4, Theorem 1.1]) Let M be a closed, smooth, connected,

d-dimensional, unorientedly null-cobordant manifold. Then we have that

cup(M) ≤ 1 +
d − charrank(M) − 1

rM

. (1)

In the following section, we shall show that a new type of numerical condition

which is satisfied by the total space E, if F is totally non-homologous to zero in E,

can be obtained by using the characteristic rank. As the main results, we shall first

derive (in Theorem 2.1) some upper and lower bounds for the characteristic rank of

those total spaces which need not be null-cobordant (zero-cobordant), and then we

shall deduce (in Theorem 2.2) bounds for the characteristic rank of null-cobordant

total spaces. In addition, (infinitely many) non-trivial fibre bundles will be exhibited

for which our upper and lower bounds coincide; thus these bounds cannot be improved

in general.
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2 The characteristic rank for smooth fibre bundles

with fibre totally non-homologous to zero

2.1 General total spaces

In this subsection, as the first of our main results, we give some bounds for the

characteristic rank of the total space of any smooth fibre bundle with fibre totally

non-homologous to zero; the total space need not be null-cobordant.

Theorem 2.1. Let p : E → B be a smooth fibre bundle with fibre F totally non-

homologous to zero. Then we have that (if charrank(E) ≤ dim(F ), then)

min{rB, rF} − 1 = rE − 1 ≤ charrank(E) ≤ charrank(F ).

Proof. It is clear that charrank(E) ≥ rE − 1. Since for the Poincaré polynomials we

now have P (E; t) = (1 + trE + . . . ) = P (B; t)P (F ; t) = (1 + trB + . . . )(1 + trF + . . . ),

we see that rE = min{rB, rF}, and so it is true that charrank(E) ≥ rE − 1 =

min{rB, rF} − 1. [Of course, in detail, P (E; t) = 1 + t
rE +

∑
i≥rE,ei≥0

eit
i, and similarly for P (B; t) and P (F ; t).]

It remains to prove that charrank(E) ≤ charrank(F ). Take any cohomology class

x ∈ Hk(F ) with k ≤ charrank(E). Since i∗ : H∗(E) → H∗(F ) is an epimorphism,

there exists some y ∈ Hk(E) such that i∗(y) = x. Thanks to the fact that k ≤

charrank(E), we have that y = Q(w1(E), w2(E), . . . ) for some polynomial Q.

For any smooth fibre bundle we have TE ∼= p∗(TB) ⊕ κ, where κ is the vector

bundle along the fibres (so that i∗(κ) ∼= TF ). As a consequence, for the Stiefel-

Whitney characteristic classes we have i∗(wt(E)) = wt(F ) for all t, thus implying

that

x = i∗(y) = i∗(Q(w1(E), w2(E), . . . )) = Q(w1(F ), w2(F ), . . . ).

This finishes the proof.

Remark 2.1. For any (smooth, closed, connected) manifolds M and N , we have two

obvious trivial fibre bundles with the same total space M × N . As a special case of

the preceding theorem, we obtain that

min{rM , rN} − 1 ≤ charrank(M × N)

and

charrank(M × N) ≤ min{charrank(M), charrank(N)}.
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Remark 2.2. As a consequence of the fact that i∗(wt(E)) = wt(F ) for all t, any

smooth fibre bundle p : E → B with fibre F such that charrank(F ) = dim(F ) has

fibre totally non-homologous to zero; see [3] for further details. Hence Theorem 2.1

applies, in particular, to all fibre bundles such that charrank(F ) = dim(F ).

Remark 2.3. The following example shows one of possible uses of Theorem 2.1 and

testifies that, in general, the bounds for charrank(E) given by Theorem 2.1 cannot

be improved.

Example 2.1. We calculate the characteristic rank for the complex flag manifolds

F (1, 1, n − 2) ∼= U(n)/(U(1) × U(1) × U(n − 2)). We recall that F (1, 1, n − 2) may

be interpreted to consist of triples (S1, S2, S3), where Si are mutually orthogonal

vector subspaces in C
n such that dimC(S1) = dimC(S2) = 1 and dimC(S3) = n − 2.

Then one has a smooth fibre bundle over the complex Grassmann manifold CGn,2
∼=

U(n)/(U(2)×U(n−2)) (consisting of complex 2-dimensional vector subspaces in C
n),

p : F (1, 1, n − 2) → CGn,2, p(S1, S2, S3) = S1 ⊕ S2. One can see in several ways (for

instance, by applying [7, Ch. 3, Lemma 4.5]) that the fibre, the complex projective

space CP 1 (known to be diffeomorphic to the 2-dimensional sphere S2), is totally

non-homologous to zero with respect to Z2. Of course, we have charrank(CP 1) = 1.

Now for E = F (1, 1, n − 2), B = CGn,2, F = CP 1, we have rB = rF = 2, hence

the lower and upper bounds given by Theorem 2.1 coincide, and we obtain that

charrank(F (1, 1, n − 2)) = 1.

2.2 Null-cobordant total spaces

For any null-cobordant manifold E, one has (cf. [4]) charrank(E) < dim(E). For the

characteristic rank of such a manifold, if it serves as the total space of a smooth fibre

bundle with fibre totally non-homologous to zero, we now derive, as the second of our

main results, the following.

Theorem 2.2. Let p : E → B be a smooth fibre bundle with E null-cobordant and

with fibre F totally non-homologous to zero. Then we have that (if charrank(E) ≤ dim(F ), then)

min{rB, rF} − 1 = rE − 1 ≤ charrank(E) ≤ min{uB,F , charrank(F )},

where uB,F = dim(B) + dim(F ) − 1 − min{rB, rF}(cup(B) + cup(F ) − 1).
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Proof. We have now by Horanská and Korbaš [2, Lemma, p. 25] that

cup(E) ≥ cup(B) + cup(F ).

At the same time, by Theorem 1.1 we have the inequality (1) for M = E. Thus we

obtain the inequality

rEcup(B) + rEcup(F ) ≤ rE + dim(E) − charrank(E) − 1,

and this gives the upper bound for charrank(E) stated in the theorem, if we take into

account that rE = min{rB, rF}, dim(E) = dim(B)+dim(F ) and that, in addition, by

Theorem 2.1 we have the inequality charrank(E) ≤ charrank(F ). The lower bound

is the same as in Theorem 2.1. This finishes the proof.

The following example is a non-trivial application of Theorem 2.2 and also gives

evidence that, in general, the bounds for charrank(E) given by Theorem 2.2 are sharp.

Example 2.2. We again calculate, this time in a different way (as compared to

Example 2.1), the characteristic rank for the complex flag manifolds F (1, 1, n − 2).

We now take a smooth fibre bundle over the complex projective space CP n−1, p :

F (1, 1, n − 2) → CP n−1, p(S1, S2, S3) = S1. Its fibre, the complex projective space

CP n−2, is totally non-homologous to zero with respect to Z2 (this can be seen in

several ways; for instance, apply [7, Ch. 3, Lemma 4.5]). There is an obvious

smooth fixed point free involution on F (1, 1, n − 2), interchanging S1 and S2 for

every (S1, S2, S3) ∈ F (1, 1, n − 2); in other words, the group Z2 acts smoothly and

without fixed points on F (1, 1, n − 2). As a consequence (cf. [5]), the flag manifold

F (1, 1, n−2) is null-cobordant. We have cup(CP k) = k (see for instance [8, Theorem

15.33]). Now for E = F (1, 1, n − 2), B = CP n−1, F = CP n−2, we have rB = rF = 2

and uB,F = 2n−2+2n−4−1−2(n−1+n−2−1) = 1, hence the lower and upper bounds

given by Theorem 2.2 coincide, and we obtain that charrank(F (1, 1, n − 2)) = 1.

The authors thank Professor Peter Zvengrowski and the referee for useful com-

ments which contributed to improving the presentation of this paper.
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